3装置原理
3.1 硬件配置及原理框图见附图。
3.2 模拟量输入
系统电压Us及待并电压Ug经隔离互感器隔离变换后输入,经低通滤波器输入至模数变换器,CPU采样后对数字进行处理,构成各种控制继电器,并计算各种遥测量。
3.3软件说明
3.3.1 同期起动及读定值区
本装置可由外部起动按钮起动(DI9/5X9端子接通时间必须大于100ms),也可由后台计算机遥控起动。装置起动后首先判断无压方式开入(DI10/5X10端子,也可由后台遥控置无压方式)是否等于1,若是,则转入无压合闸子程序,若不是,则转入同期合闸子程序。不管转入无压合闸子程序还是同期合闸子程序,一旦转入即根据选择对象开入(DI1~4/5X1~4分别对应*1~4个同期点)调入该区定值进行计算(调定值大约需要2.5秒时间),并根据控制字KG1.1和KG1.0判定同期点类型(机组型、线路型、线路转机组方式1、线路转机组方式2共四种)。装置检测到两个及以上同期对象投入时报“同期开入重复”并告警;装置起动后检测到无同期对象投入时报“未选择同期对象”并告警。
SAI380TQ型智能准同期装置
发电机同期并列是发电厂一项很频繁的日常操作,如果操作失误,冲击电流过大,可能使机组的大轴扭曲及引起发电机的绕组变型、撕裂、绝缘损坏,严重的非同期并列会造成机组和电网事故,所以电力部门将并网自动化列为电力系统自动化的一项重要任务。另外随着计算机技术的发展和电力系统自动化水平的不断提高,对同期设备的可靠性、可操作性等性能也提出了更高的要求。
智能准同期装置基于32位微机保护平台开发,全部程序均采用C语言编写,保证了较高的可靠性和性,能够满足各种同期应用场合的要求。它既可用于水、火电厂同步发电机组的快速并网,又可用于输电线路的快速同期合闸。对于不同接线方式,本装置**其智能化设计思想:可根据运行方式自动改变同期点类型,并可自动投入需要调节的发电机组调速调压回路,以提高同期点断路器并网速度,减小冲击电流,大大减少运行人员工作量;允许同频并网,在外部自动调速系统失灵时缩短了并网时间;自动修改导前时间避免了现场投运前需测量同期点断路器合闸时间的麻烦;采用测量频差及频差变化率的方法计算预测合闸角度,不仅保证装置在次满足同期条件时发出合闸令,更提高了合闸时的精度。
本装置可实现1-8个同期点的同期操作功能,但此时必需同期选点装置,否则无法切换公共的回路,若不和同期选点装置或者把手代替配合使用,本装置只实现一个同期点的同期操作,可以是线路模式或者机组模式。
机械性能
2.5.1振动
装置能承受GB7261中16.3规定的严酷等级为I级的振动耐久能力试验。
2.5.2冲击
装置能承受GB7261中17.5规定的严酷等级为I级的冲击耐久能力试验。
2.5.3碰撞
装置能承受GB7261*18章规定的严酷等级为I级的冲击耐久能力试验。
2.6 环境条件
a) 环境温度:工作:-40℃~+85℃。
储存:-25℃~+70℃,在极限值下不施加激励量,装置不出现不可逆的变
化,温度恢复后,装置应能正常工作。
b) 相对湿度:湿月的月平均大相对湿度为90%,同时该月的月平均
低温度为25 ℃且表面无凝露。高温度为+40℃时,平均大相对湿
度不**过50%。
c) 大气压力:86~106kPa(相对海拔高度2km以下)
三、软件功能说明
3.1.差动速断保护
当任一相差电流大于差动速断整定值时,保护动作于全停。用于发电机在区内发生严重故障情况下快速切除发电机。差动速断定值应能躲过外部故障的大不平衡电流,并考虑到电流互感器饱和因素,一般取3~8倍的额定电流。
3.2.比率差动保护
采用常规比率差动原理,其动作方程如下:
Id > Icd (Ir < Ir0)
Id - Icd > Kcd ·(Ir- Ir0) (Ir ≥ Ir0)
同时满足上述两个方程时,比率差动元件动作。其中,Id为差动电流,Ir为制动电流,Kcd为比率制动系数,Icd为差动电流门槛定值,Ir0为拐点电流值。
建议将元件中的拐点电流Ir0设定为1.0倍的高压侧额定电流,以保证匝间短路在制动电流小于额定电流即Ir < Ie时,没有制动作用。
差动电流门槛判据不宜过小,建议取Icd=(0.3~0.5) Ie。
比率制动系数的整定可按以下的公式进行:
Kcd = Kk ·(Ktx·Fwc + △Fph)
其中,Kk为可靠系数,取1.3~1.5
Ktx为同型系数,取1.0
Fwc为电流互感器的允许误差,取0.1
△Fph为因电流互感器引起的电流不平衡产生的相对误差,取0.05
比率制动系数Kcd建议取值范围为0.3~0.7。
Id =∣ +∣
Ir =∣-∣/2
式中,、分别为机端侧和中性点侧电流。
3.3.TA断线报警及闭锁
具有瞬时TA断线闭锁或告警功能及差流越限告警功能。
3.3.1瞬时TA断线
比率差动启动后,需经过瞬时TA断线的检测,保证差流不是由于断线引起的。判别为TA断线后,发出告警信号,报告TA断线,通过调整控制字可以决定是否闭锁差动保护。
瞬时TA断线判别在满足下列任何一个条件时,将不进行TA断线判别:
启动前某侧大相电流小于该侧额定电流的20%,则不判该侧;
启动后相电流大值大于该侧额定电流的120%;
启动后任一侧电流比启动前增加。
在上述三个条件均不满足的情况下,如某一侧同时满足以下条件,则判为CT断线:
只有一相电流为零;
其余两相电流于启动前电流相等。
3.3.2差流越限告警
如差流大于15%的额定电流,经判别**过10s后,发出告警信号。并报告差流越限,但不闭锁差动保护。这一功能兼起保护装置交流采样回路的监视功能。
1DL或2DL的设置可采用方式1,即检测到DL为分位时转为机组型,DL为合位时转为线路型。
控制字2中KG2.7/KG2.6/KG2.5控制方式2所需检测的系统侧电源进线同期点对象编号,KG2.12/KG2.11/KG2.10控制方式2所需检测的待并侧电源进线同期点对象编号,KG2.9/KG2.8控制所需投入反向调节的机组编号,KG2.14/KG2.13控制所需投入正向调节的机组编号。
3.3.3 无压合闸
装置在调入定值并判定该同期点类型为线路型、线路转机组方式1或线路转机组方式2时,系统侧电压Us或待并侧电压Ug任一侧无压(Us≤40V或Us≤40V),延时20ms发合闸令;两侧均有压(Us>40V且Ug>40V)时报“无压条件不满足”并告警。
装置在调入定值并判定该同期点类型为机组型时,根据控制字KG1.9判定“机组无压检任一侧/KG1.9=0)”还是“机组无压检系统侧”。若KG1.9=0,满足系统侧电压Us或待并侧电压Ug任一侧无压(Us≤40V或Us≤≤40V),延时20ms发合闸令;两侧均有压时报“无压条件不满足”并告警。若KG1.9=1,满足系统侧无压且待并侧有压(Us≤40V且Ug≥80V)时, 延时20ms发合闸令;系统侧有压或待并侧无压(Us>40V或Ug<80V)时,报“无压条件不满足”并告警。
3.3.4 同期合闸
同期合闸分为线路型和机组型两类。
线路型同期点满足压差小于整定值且相位差小于整定值(|Ug-Us|≤ΔU且│Arg(Ug/Us)-θgy│≤θhb)时,延时20ms发合闸令;若压差过大(|Ug-Us|>ΔU),报“压差不满足”并告警;若相位差过大(│Arg(Ug/Us)-θgy│>θhb),报“相差不满足”并告警。
机组型同期点原理和实现方法:
机组同期时,必须考虑三个因素:压差、频差及相位差。对于发电机组而言,压差产生的冲击电流并不会对机组产生太大的影响,因为发电机组在短时间内是可以承受短路电流冲击的。但为什么有的非同期合闸会造成机组大轴弯曲、定子线圈撕裂、绝缘损坏甚至造成电网事故呢?究其原因,是因为在机组并网的时刻,系统侧旋转电势与机组侧旋转电势偏离角度过大,在断路器合闸的瞬间,系统会在较短的时间内将发电机组拉入同步,这就使得在发电机转子上随受相当大的扭矩,手动并网时有时会听到发电机“嗡”的一声就是系统将机组拉入同步时相差过大引起的。即使采用了微机自动同期装置,如果合闸时相位控制不好,长期下去也必会对给机组造成内伤。
http://narikj0755.cn.b2b168.com